Beam Envelope Simulation with Space Charge in SAD

Kazuro Furukawa (KEK) Christopher K. Allen (LANL) Sep. 6, 2006

Workshop SAD2006

1

Contents

Background
KEKB, J-PARC, SNS, Space Charge, Beam loss, Commissioning-tool
Envelope Simulation with Space Charge
Linear Calculation, Assumption
Adaptive Stepping
Find Appropriate Step for Space Charge Matrix
For SAD
Example, Comparison

Success of KEKB with SAD

Fast Commissioning Tool was a Primary Concern to Compete with SLAC/PEPII

Pre-SAD

¤ Data Collection - Data Manipulation - Compare/Fit to Simulation - Feedback to Machine

In Several Programs, by Several persons, may take a week

♦ SAD

- In one Panel, by one person, in a minute
- **All-in-one** (All but Kitchen-sink)

•Accelerator Modeling, Machine Controls, Data Archives, Data Manipulations, GUI

Anyone can Write

•List-oriented (Mathematica-like) Scripting Language

Was Quicker to Achieve Higher Luminosity

Background

J-PARC

Fast Commissioning Tool Again

- **Determine/Calibrate Accelerator Equipment**
- **^{II}** Optimize Parameters one-by-one
- **¤ Quicker** Turn-around

Space Charge Calculation is Expensive

- **Linear Optics vs. Space Charge**
- **¤** Envelope Simulation vs. Tracking Simulation
- At least Linac need Space Charge Handling from the Beginning
 Peak Current cannot be Reduced, only Pulse Width can be reduced
 RCS/MR may start with Linear Optics (?)

SNS

Adaptive Envelope Simulation under XAL/Java Environment

Possible J-PARC Strategy(?), with Online and Offline Models

¤ Envelope Online Tools for Commissioning

Tracking Offline Tools for Detailed Beam-loss Estimation

Chance to Invite Christopher K. Allen

- Experience to Develop Envelope Simulation
- XAL/Java Environment
- Same Method under SAD(?)
- Possible Application to Electron Machines(?)

Beam Simulation Overview

Extension of Linear Beam Optics

In a straightforward manner, the linear beam optics model for single particle dynamics can be extended to the dynamics for the second moments of the beam.

* For intense beams, space charge effects are significant and must be included. For a beam optics model, this means a matrix Φ_{sc} that accounts for space charge (linear force!). It is accurate only over short distance.

* For ellipsoidally symmetric beams, we can produce such a Φ_{sc} that is almost independent of the actual beam profile.

Beam Simulation Overview

♦ In the SAD environment we are given the full transfer matrix Φ_n for each element *n*. We must take the Nth root of each Φ_n where $N = L_n / \Delta s$ is the number of space charge "kicks" to be applied within the element.

* Propagate moment matrix σ through each element using above transfer matrix and the space charge matrix Φ_{sc} computed for each step Δs

 \diamond Since the second moments depend upon Φ_{sc} and Φ_{sc} depends upon the second moments, we have self-consistency issues. We employ an adaptive propagation algorithm that maintains certain level of consistency.

Envelope Simulation

•RMS envelope simulation is based on the following:

- Phase space coordinates $z = (x x' y y' z dp)^T$
- **\diamond** Linear beam optics transfer matrices $z_{n+1} = \Phi_n z_n$
- Moment operator $\langle \cdot \rangle$, $\langle g \rangle = \int g(z) f(z) d^6 z$
- Moment matrix $\sigma = \langle z z^T \rangle$

• Propagation of moment matrix $\sigma_{n+1} = \Phi_n \sigma_n \Phi_n^T$

SAD

Initialization

*We can obtain $\{\Phi_n\}$ and $\{L_n\}$, the lengths of the elements, from calls to the SAD environment

 $\{\Phi_n\}$ = TransferMatrices/.Emittance[Matrix->True]; $\{L_n\}$ = LINE["LENGTH"];

• The initial moment matrix σ_0 is built from the initial Twiss parameters $\sigma_0 = \text{CorrelationMatrix6D}[\{\alpha,\beta,\gamma\}_x, \{\alpha,\beta,\gamma\}_y, \{\alpha,\beta,\gamma\}_z]$

SAD

Implementations

•Sub-Dividing Beamline Elements (the N^{th} root of Φ_n) •The transfer matrix Φ_n for an element *n* has the form

 $\Phi_n = \exp(L_n F_n)$

where L_n is the length of the element and F_n is the generator matrix which represents the external forces of element n.

\bullet To sub-divide element *n*, we require the matrix F_n , given by

 $\mathsf{F}_n = \log(\Phi_n) / \mathcal{L}_n$

***** The "sub-transfer matrix" $\Phi_n(\Delta s)$ for element *n* can then be computed as

$$\Phi_n(\Delta s) = \exp(\Delta s F_n)$$

Implementations

Transfer Matrices with Space Charge

\diamond Whether using the equations of motion or Hamiltonian formalism, within a section Δs of a element *n* we can write the first-order continuous dynamics as

$$\mathbf{z}'(s) = \mathbf{F}_n \mathbf{z}(s) + \mathbf{F}_{sc}(\sigma) \mathbf{z}(s)$$

• where the matrix F_n represents the external force of element *n* and $F_{sc}(\sigma)$ is the matrix of space charge forces.

• For $\mathbf{F}_{sc}(\sigma)$ constant, the solution is $\mathbf{z}(s) = \exp[s(\mathbf{F}_n + \mathbf{F}_{sc})]\mathbf{z}_0$.

Thus, the full transfer matrix including space charge should be

$$\Phi_n = \exp[\Delta s(\mathbf{F}_n + \mathbf{F}_{sc})]$$

Field Calculations

• Space charge effects are included by assuming the beam has ellipsoidal symmetry with dimensions corresponding to the statistics in σ .

 $f(z) = f(z^{\mathsf{T}} \sigma^{-1} z)$

Analytic field expressions for such a bunch distributions are available

where a, b, c, are the semi-axes of the ellipsoid (depends upon σ) and (x,y,z) are the coordinates along the semi-axes

Second-order Accurate Transfer-Matrix can be generated

Stepping

Approach

\diamond Form Form a transfer matrix $\Phi(s;s_0)$ that includes space effects to second order (2nd order accurate)

Choose error tolerance ε in the solution (~ 10⁻⁵ to 10⁻⁷)

*Use $\Phi(s;s_0)$ to propagate τ in steps *h* whose length is determined adaptively to maintain ε

Codeing Example

! MODULE ScheffTest	
1	
!	Load Beamline
·	
! Module for testing the envelope space charge routines in	GetMAIN["~ckallen/J-Parc/linac/simdb-LI_L3BT01-nopmq0000.sad"];
SADScript Specifically for testing the functions found	!GetMAIN["~ckallen/J-Parc/linac/simdb-NoBends.sad"];
in the nackages	L3BT01 = ExtractBeamLine["L3BT01all"];
I III III Packages	
1. Scheff n	! Initialize SAD Environment
Trace2dToSad n	1
This Utility n	
	USEL3BT01:
:	TRPT
L line at 181 MaV	INS:
	CAL
: Author : Christopher K. Allen	,
Created : November 2005	NOCOD:
	RFSW:
11	\$DisplayFunction = CanvasDrawer:
 11 Initialize SAD	
	Define the Initial Beam Particle
FFS: Begin SADScript	
Tro, Degin bribbenpt	
1	MASS = 0.939294 GEV:
I GLOBAL CONSTANTS	!CHARGE = -1:
	!MOMENTUM = 0.610624 GEV:
strBeamline = "L3BT01all": ! beamline	!InitialOrbits = $\{\{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$
strFileOut = "ScheffTestOut.txt" ! output file name	
·····	
Since 1986	
SAD Workshop 2006	Kazuro Furukawa, KEK, Sep.200

! INITIALIZE SIMULATION
!
TRACE3D Parameters
!
f = 324.0e6; ! RF frequency (Hz)

 $Er = 939.29432e6; ! particle rest energy (eV) \\ W = 181.0338e6; ! beam kinetic energy (eV) \\ XI = 30.0e-3 ! beam current (A)$

vecTwissXt3d = {-0.44117, 5.774, 1.889}; vecTwissYt3d = {0.21808, 6.4229, 1.706}; vecTwissZt3d = {0.3095, 2.0888, 466.99};

1

1

1

Numerical Parameters

h0 = 0.01;! initial step lengtherrSoln = 1.0e-5;! solution error tolerancehmax = 0.0;! maximum step length (=0 turned off)hslack = 0.05;! adaptive step backlash tolerance

Convert to SAD Parameters

Q = XI/f; ! beam bunch charge (C)

vecTwissX = TraceToSadTransTwiss[vecTwissXt3d]; vecTwissY = TraceToSadTransTwiss[vecTwissYt3d]; vecTwissZ = TraceToSadLongTwiss[f, Er, W, vecTwissZt3d];

1 Author : Christopher K. Allen 1 ! Created : November, 2005 1 SaveMatrix[strFile_, mat_] := Module[{ ! matrix dimensions vector dims. Μ. ! number of rows ! number of columns N, ! loop control - rows m. ! loop control - columns n, fos ! file output stream

! strFile file name to store matrix

matrix to be stored

! FUNCTION SaveMatrix

1

! Parameters

! Returned Value

! mat

! None

},

];

! Function saving an arbitrary matrix to persistent storage.

$$\label{eq:main_state} \begin{split} & \dim = \text{Dimensions}[\text{mat}]; \\ & M = \dim[[1]]; \\ & N = \dim[[2]]; \end{split}$$

fos = OpenWrite[strFile]; Write[fos, "Matrix Dimensions ", M, "x", N];

For[m=1, m<=M, m++, For[n=1, n<=N, n++,

WriteString[fos," : ", mat[[m,n]]]
];
Write[fos, " : "];

! ! RUN SIMULATION !

! Compute generalized perveance and initial moment matrix

K0 = ComputePerveance[f, Er, W, Q]; sig0 = CorrelationMatrix6D[vecTwissX, vecTwissY, vecTwissZ];

! Run simulation
!{lstPos, lstGamma, lstSig} = ScheffSimulate[K0, sig0];
{lstPos, lstGamma, lstSig} = ScheffSimulate[K0, sig0, h0, errSoln, hslack, hmax];

! Store results SaveBeamMatrixData[strFileOut, lstPos, lstGamma, lstSig];

! Look at the Results PlotBeamBeta[lstPos, lstSig];

!{lstPos, lstGamma, lstTm} = GetBeamlineElementData[]; !TmRf = lstTm[[161]]; !posRf = lstPos[[161]]; !SaveMatrix["SadRfGapMatrix.txt",TmRf];

Exit[];

Comparison to Trace3D

Simulation Test J-PARC Beam Transport Line from Linac to RCS × 181MeV, 30mA Good Agreement × Small Discrepancy Symplectic transfer matrix Adaptive Stepping

SAD

Summary

Envelope Simulation with Space Charge was Implemented in SAD Environment

There are Several Other Efforts

Application to Electron is Rather Difficult with Envelope
 Oide-san's Poisson Solver is Possible

SIAD Megic Accelerator Design