Beam Envelope Simulation with Space Charge in SAD

Kazuro Furukawa (KEK)
Christopher K. Allen (LANL)
Sep. 6, 2006

Workshop SAD2006

Contents

Background
KKKB, J-PARC, SNS, Space Charge, Beam loss, Commissioning-tool

- Envelope Simulation with Space Charge
* Linear Calculation, Assumption
\checkmark Adaptive Stepping
Find Appropriate Step for Space Charge Matrix
- For SAD
- Example, Comparison

Background

Success of KEKB with SAD

\% Fast Commissioning Tool was a Primary Concern
rto Compete with SLAC/PEPII

-Pre-SAD

rData Collection - Data Manipulation - Compare/Fit to
Simulation - Feedback to Machine
rIn Several Programs, by Several persons, may take a week
*SAD
\square In one Panel, by one person, in a minute
\quad All-in-one (All but Kitchen-sink)
Accelerator Modeling, Machine Controls, Data Archives, Data Manipulations, GUI
\neg Anyone can Write
List-oriented (Mathematica-like) Scripting Language
\neg Was Quicker to Achieve Higher Luminosity

Background

-J-PARC

Fast Commissioning Tool Again
\neg Determine/Calibrate Accelerator Equipment
rOptimize Parameters one-by-one
rQuicker Turn-around
*Space Charge Calculation is Expensive
\square Linear Optics vs. Space Charge
万Envelope Simulation vs. Tracking Simulation
\checkmark At least Linac need Space Charge Handling from the Beginning Peak Current cannot be Reduced, only Pulse Width can be reduced RCS/MR may start with Linear Optics (?)
SNS
ZAdaptive Envelope Simulation under XAL/Java Environment

* Possible J-PARC Strategy(?), with Online and Offline Models
rEnvelope Online Tools for Commissioning
\triangleleft Tracking Offline Tools for Detailed Beam-loss Estimation

Background

-Chance to Invite Christopher K. Allen

* Experience to Develop Envelope Simulation
* XAL/Java Environment

Same Method under SAD(?)
*Possible Application to Electron Machines(?)

Beam Simulation Overview

Extension of Linear Beam Optics

* In a straightforward manner, the linear beam optics model for single particle dynamics can be extended to the dynamics for the second moments of the beam.
*For intense beams, space charge effects are significant and must be included. For a beam optics model, this means a matrix $\Phi_{s c}$ that accounts for space charge (linear force!). It is accurate only over short distance.
*For ellipsoidally symmetric beams, we can produce such a $\Phi_{\text {sc }}$ that is almost independent of the actual beam profile.

Beam Simulation Overview

In the SAD environment we are given the full transfer matrix Φ_{n} for each element n. We must take the $N^{\text {th }}$ root of each Φ_{n} where $N=L_{n} I \Delta s$ is the number of space charge "kicks" to be applied within the element.

Propagate moment matrix σ through each element using above transfer matrix and the space charge matrix $\Phi_{s c}$ computed for each step Δs
*Since the second moments depend upon $\Phi_{s c}$ and $\Phi_{s c}$ depends upon the second moments, we have self-consistency issues. We employ an adaptive propagation algorithm that maintains certain level of consistency.

Envelope Simulation

RMS envelope simulation is based on the following:
*Phase space coordinates $z=\left(x x^{\prime} \text { y } y^{\prime} z d p\right)^{\top}$
Linear beam optics - transfer matrices $\mathbf{z}_{n+1}=\Phi_{n} \mathbf{z}_{n}$
Moment operator $\langle\cdot\rangle,\langle g\rangle \equiv \int g(z) f(z) d^{6} z$

* Moment matrix $\sigma=\left\langle z z^{\top}\right\rangle$
\& Propagation of moment matrix $\sigma_{n+1}=\Phi_{n} \sigma_{n} \Phi_{n}{ }^{\top}$

Implementation under SAD

Initialization

We can obtain $\left\{\Phi_{n}\right\}$ and $\left\{L_{n}\right\}$, the lengths of the elements, from calls to the SAD environment

$$
\begin{aligned}
& \left\{\Phi_{n}\right\}=\text { TransferMatrices/.Emittance[Matrix->True]; } \\
& \left\{L_{n}\right\}=\text { LINE["LENGTH"]; }
\end{aligned}
$$

*The initial moment matrix σ_{0} is built from the initial Twiss parameters

$$
\sigma_{0}=\text { CorrelationMatrix6D }\left[\{\alpha, \beta, \gamma\}_{x},\{\alpha, \beta, \gamma\}_{y},\{\alpha, \beta, \gamma\}_{z}\right]
$$

$$
\dot{\mathbf{o}}_{0}=\left(\begin{array}{cccccc}
\beta_{x} \widetilde{\varepsilon}_{x} & -\alpha_{x} \widetilde{\varepsilon}_{x} & 0 & 0 & 0 & 0 \\
-\alpha_{x} \widetilde{\varepsilon}_{x} & \gamma_{x} \widetilde{\varepsilon}_{x} & 0 & 0 & 0 & 0 \\
0 & 0 & \beta_{y} \widetilde{\varepsilon}_{y} & -\alpha_{y} \widetilde{\varepsilon}_{y} & 0 & 0 \\
0 & 0 & -\alpha_{y} \widetilde{\varepsilon}_{y} & \gamma_{y} \widetilde{\varepsilon}_{y} & 0 & 0 \\
0 & 0 & 0 & 0 & \beta_{z} \widetilde{\varepsilon}_{z} & -\alpha_{z} \widetilde{\varepsilon}_{z} \\
0 & 0 & 0 & 0 & -\alpha_{z} \widetilde{\varepsilon}_{z} & \gamma_{z} \widetilde{\varepsilon}_{z}
\end{array}\right)
$$

Implementations

Sub-Dividing Beamline Elements (the $\boldsymbol{N}^{\text {th }}$ root of Φ_{n})
*The transfer matrix Φ_{n} for an element n has the form

$$
\Phi_{n}=\exp \left(L_{n} F_{n}\right)
$$

where L_{n} is the length of the element and F_{n} is the generator matrix which represents the external forces of element n.
:To sub-divide element n, we require the matrix F_{n}, given by

$$
F_{n}=\log \left(\Phi_{n}\right) / L_{n}
$$

*The "sub-transfer matrix" $\Phi_{n}(\Delta s)$ for element n can then be computed as

$$
\Phi_{n}(\Delta s)=\exp \left(\Delta s F_{n}\right)
$$

Implementations

-Transfer Matrices with Space Charge

Whether using the equations of motion or Hamiltonian formalism, within a section Δs of a element n we can write the first-order continuous dynamics as

$$
z^{\prime}(s)=F_{n} z(s)+F_{s c}(\sigma) z(s)
$$

where the matrix F_{n} represents the external force of element n and $F_{s c}(\sigma)$ is the matrix of space charge forces.

For $F_{s c}(\sigma)$ constant, the solution is $z(s)=\exp \left[s\left(F_{n}+F_{s c}\right)\right] z_{0}$.
*Thus, the full transfer matrix including space charge should be

$$
\Phi_{n}=\exp \left[\Delta s\left(F_{n}+F_{s c}\right)\right]
$$

Field Calculations

Space charge effects are included by assuming the beam has ellipsoidal symmetry with dimensions corresponding to the statistics in σ.

$$
f(z)=f\left(z^{\top} \sigma^{-1} z\right)
$$

- Analytic field expressions for such a bunch distributions are available

$$
\phi(x, y, z)=\frac{q a b c}{4 \varepsilon_{0}} \int_{0}^{\infty} \int_{\frac{x^{2}}{t+a^{2}}+\frac{y^{2}}{t+b^{2}}+\frac{z^{2}}{t+c^{2}}}^{\infty} \frac{f(s)}{\left(t+a^{2}\right)^{1 / 2}\left(t+b^{2}\right)^{1 / 2}\left(t+c^{2}\right)^{1 / 2}} d s d t
$$

where a, b, c, are the semi-axes of the ellipsoid (depends upon σ) and (x, y, z) are the coordinates along the semi-axes

Second-order Accurate Transfer-Matrix can be generated

Stepping

-Approach
*Form Form a transfer matrix $\Phi\left(s ; s_{0}\right)$ that includes space effects to second order ($2^{\text {nd }}$ order accurate)

Choose error tolerance ε in the solution (~ 10^{-5} to 10^{-7})

Use $\Phi\left(s ; s_{0}\right)$ to propagate τ in steps h whose length is determined adaptively to maintain ε

```
!----------------------------------
```


!

! MODULE ScheffTest
$!$ \qquad
$!$
!
! Module for testing the envelope space charge routines in
! SADScript. Specifically for testing the functions found
! in the packages
! Scheff.n
! Trace3dToSad.n
! TwissUtility.n
! Currently the file is set up to simulation the J-PARC transport
! line at 181 MeV .
$\begin{array}{ll}! & \text { Author : Christopher K. Allen } \\ ! & \text { Created : November, } 2005\end{array}$
! Created : November, 2005
!
!!===1
!!
!! Initialize SAD
!!

FFS;
! Begin SADScript
$!$
! GLOBAL CONSTANTS
!
strBeamline $=$ "L3BT01all"; ! beamline
strFileOut $=$ "ScheffTestOut.txt" ! output file name

Example

Load Beamline

GetMAIN["~ckallen/J-Parc/linac/simdb-LI_L3BT01-nopmq0000.sad"]; !GetMAIN["~ckallen/J-Parc/linac/simdb-NoBends.sad"]; L3BT01 = ExtractBeamLine["L3BT01all"];

!

1 Initialize SAD Environment

USE L3BT01;
TRPT;
INS;
CAL;
NOCOD;
RFSW;
\$DisplayFunction $=$ CanvasDrawer;

```
!
D Define the Initial Beam Particle
!
!MASS = 0.939294 GEV;
!CHARGE = -1;
!MOMENTUM = 0.610624 GEV;
IInitialOrbits = {{ 0.0,0.0,0.0,0.0,0.0,0.0 }};
```

!-
FUNCTION SaveMatrix
!
$\square-$
! INITIALIZE SIMULATION
Function saving an arbitrary matrix to persistent storage.
!
Parameters
strFile file name to store matrix
mat matrix to be stored
!
! Returned Value
None
!
! Author : Christopher K. Allen
! Created: November, 2005
!
SaveMatrix[strFile_, mat_] := Module[
\{
dims, ! matrix dimensions vector
M, ! number of rows
N, \quad ! number of columns
m , ! loop control - rows
n , ! loop control - columns
fos ! file output stream
\},
$\operatorname{dim}=$ Dimensions[mat];
$\mathrm{M}=\operatorname{dim}[[1]]$;
$\mathrm{N}=\operatorname{dim}[[2]] ;$
fos = OpenWrite[strFile];
Write[fos, "Matrix Dimensions ", M, "x", N];
For $[m=1, m<=M, m++$,
For $[\mathrm{n}=1, \mathrm{n}<=\mathrm{N}, \mathrm{n}++$,
WriteString[fos," : ", mat[[m,n]]]
];
Write[fos, " : "];
];

```
!
! RUN SIMULATION
!
! Compute generalized perveance and initial moment matrix
K0 = ComputePerveance[f, Er, W, Q]; \(\operatorname{sig} 0=\) CorrelationMatrix6D[vecTwissX, vecTwissY, vecTwissZ];
! Run simulation
!\{1stPos, lstGamma, lstSig\} = ScheffSimulate[K0, sig0];
\(\{1 s t P o s\), lstGamma, lstSig \(\}=\) ScheffSimulate [K0, sig0, h0, errSoln, hslack, hmax];
! Store results
SaveBeamMatrixData[strFileOut, 1stPos, 1stGamma, 1stSig];
! Look at the Results
PlotBeamBeta[lstPos, lstSig];
!\{1stPos, 1stGamma, 1stTm \(\}=\) GetBeamlineElementData[];
\(!T \mathrm{mRf}=1 \mathrm{stTm}[[161]]\);
!posRf = lstPos[[161]];
!SaveMatrix["SadRfGapMatrix.txt",TmRf];
Exit[];
```

SAD Workshop 2006

Comparison to Trace3D

Simulation Test

J-PARC Beam Transport
Line from Linac to RCS
r 181 MeV , 30 mA

- Good Agreement

九Small Discrepancy
Symplectic transfer matrix

- Adaptive Stepping

Summary

Envelope Simulation with Space Charge was Implemented in SAD Environment

-There are Several Other Efforts

- Application to Electron is Rather Difficult with Envelope
- Oide-san's Poisson Solver is Possible

