Dynamic Aperture Survey of ILC Damping Ring using SAD

- 1. Wiggler fringe effect
- 2. Multipole errors

Y. Ohnishi / KEK 2006.09.05

Workshop SAD2006

ILC Baseline Machine (500 GeV)

not to scale

Nonlinear wigglers

SAD can deal with nonlinear wigglers due to fringe field.

Tracking simulations - TESLA Dogbone

Tracking simulation well reproduces the octupole-like component of the wigglers. There is no significant difference between without and with nonlinear wig. for DA.

6

Dynamic Aperture Survey with SAD

- 6-dimensional coordinate: (x, $x'=p_x/p_0$, y, $y'=p_y/p_0$, z, $\delta=\Delta p/p_0$)
- Survey region is divided by 51 regions.
- Start from the smallest initial amplitudes.
- Maximum initial amplitude is defined by "dynamic aperture" where the particle can circulate stable during the required turns.
- Option (default):

Ring or Transport beam-line	RING	TRPT
Synchrotron radiation	RAD	NORAD
Quantum excitation (need random seeds)	FLUC	NOFLUC
Acceleration by rf cavities	RFSW	NORFSW
COD with/without radiation loss p ₀ changes with energy loss or constant(design value)	RADCOD	NORADCOD

Ordinary dynamic aperture survey uses: RAD, NOFLUC, RFSW, RADCOD

SAD script

Dynamic aperture survey

nx=350;
k=1;
nz=22;
dnz=2;
nturns=500;

$$N_x = \sqrt{\frac{2J_x}{\varepsilon_x + \varepsilon_y}}$$
 $N_y = \sqrt{\frac{2J_y}{\varepsilon_x + \varepsilon_y}}$ $N_z = \sqrt{\frac{2J_z}{\varepsilon_z}} = \frac{\delta}{\sigma_{\delta}}$ $k = \frac{J_y}{J_x} = \left(\frac{N_y}{N_x}\right)^2$

2J: Courant-Snyder invariant

FFS["emit"];

result=DynamicApertureSurvey[{{0,nx},{0,nx*Sqrt[k]},Range[-nz,nz,dnz]},nturns,Output->6];

sigmap=MomentumSpread/.Emittance[]; dpop0=sigmap*result[[2,1,3]]; Nx=Transpose[result[[2,2]]][[2]]/51*nx; Ax=EMITX*Nx^2; score=result[[1]];

$$Ax = 2J_x = \varepsilon_x \times N_x^2 \quad (\varepsilon_y \ll \varepsilon_x)$$

	_
1aximum number of particles =161	
Range Xmin: 0.000 Xmax: 350.000	
(Ymin: 0.000 Ymax: 350.000)	
Zmin: -22.000 Zmax: 22.000	
Bisplay: 100 turns/character	
NZ 012131415	5
-22.00 0.0000000000000000000000000000000	5
-20.00 0 0000000000000000000000000000000	5
-18.00 3 4440000000000000000000000000000000	5
-16.00 2 44100040000000000000000000000000000	5
-14.00 8 +44444440100000000000000000000000000000	5
-12.00 9 **4444441100000000000000000000000000000	5
-10.00 8 *44444444441441100040000100000000000000	5
-8.00 9 **444444444444444444444444444444444	5
-6.00 12 *****444444444440000000000000000000000	5
-4.00 20 **************44444440440000000000	5
-2.00 26 ********************************444444000000	5
0.00 31 **********************************	5
2.00 25 **********************************	5
4.00 19 *****************4444444444444444444	5
6.00 16 **********************************	5
8.00 7 44444404044040014000000000000000000	5
10.00 11 ****444444410100000000000000000000	5
12.00 7 4444444000000000000000000000000000	5
14.00 6 44444144000000000000000000000000000	5
16.00 7 44444400144000004000000000000000000	5
18.00 2 44210000000000000000000000000000000)
20.00 0 0000000000000000000000000000000)
22.00 0 0000000000000000000000000000000)
NZ 0!12!3!4!5	5
Score: 228	

Multipole errors for magnets

$B_{y} + iB_{x} = B(r_{0})\sum_{k=1}^{k} (b_{k} + ia_{k})(x + iy)^{k-1} \frac{1}{r_{0}^{k-1}}$							
	PEP-II	PEP-II		SPEAR3			
index	Dipole	Qudrupole		Sextupole			
k	b _k /b ₁	b _k /b ₂	a _k /a ₂	b _k /b ₃			
3	1.6x10 ⁻⁴	-1.24x10⁻⁵	-1.15x10⁻⁵				
4	-1.6x10 ⁻⁵	2.30x10 ⁻⁶	1.41x10 ⁻⁵	2.0x10 ⁻⁴			
5	7.5x10 ⁻⁵	-4.30x10 ⁻⁶	6.20x10 ⁻⁷	1.0x10 ⁻⁴			
6		3.40x10 ⁻⁴	-4.93x10 ⁻⁵	7.0x10 ⁻⁴			
7		3.00x10 ⁻⁷	-1.02x10⁻ ⁶	1.0x10 ⁻⁴			
8		6.00x10 ⁻⁷	3.80x10 ⁻⁷	1.0x10 ⁻⁴			
9		6.00x10 ⁻⁷	-2.80x10 ⁻⁷	1.0x10 ⁻⁴			
10		-6.17x10 ⁻⁵	-5.77x10 ⁻⁵	1.0x10 ⁻⁴			
11		-2.00x10 ⁻⁷	-3.80x10 ⁻⁷	1.0x10 ⁻⁴			
12		3.60x10 ⁻⁶	-6.53x10⁻ ⁶	3.2x10 ⁻³			
13		6.00x10 ⁻⁷	1.20x10 ⁻⁶				
14		1.00x10 ⁻⁶	-7.40x10 ⁻⁷				
r ₀ (m)	0.030	0.050		0.032			

$$+ iB_{x} = B(r_{0})\sum_{k=1}^{k} (b_{k} + ia_{k})(x + iy)^{k-1} \frac{1}{r_{0}^{k-1}}$$

measured data (Y. Cai)

allowed multipoles

Bend, Quad, Sextupole

SAD script

Insertion of multipole elements

```
FQD1=()
MULT
                           define MULT components
            FQF1=()
;
FFS:
nm=Element["NAME","BE*|Q{DF}*|S{DF}*"];
line=ExtractBeamLine[ringName];
 Do
                                                                   multipole elements(L=0)
  line=line/.ToExpression[nm[[i]]]->
           BeamLine[ToExpression["F"//nm[[i]]],ToExpression[nm[[i]]],ToExpression["F"//nm[[i]]]];
  ,{i,1,Length[nm]}];
 FFS["visit line;"];
 FFS["calc;"];
 !!! Quadrupole
 quad=Element["NAME","Q{DF}*"];
                                      coefficient: a_n
 aquad=\{\ldots,\};
                                      coefficient: b_n
 bquad=\{....\};
r0=0.05;
                                      bore radius: r_0
 mm=1;
 Do
  Scan[(Element['K''/nn, "F''/#]=0.5*Element['K1'', #]*Factorial[nn]*bquad[[nn+1]]/r0^(nn-mm))\&, quad];
  Scan[(Element["SK"//nn,"F"//#]=0.5*Element["K1",#]*Factorial[nn]*aquad[[nn+1]]/r0^(nn-mm))\&,quad];
  ,{nn,2,13}];
```

Dynamic Aperture Survey - ILC Damping Ring

- Dynamic Aperture
 - Tracking simulations (x, $x'=p_x/p_0$, y, $y'=p_y/p_0$, z, $\delta=\Delta p/p_0$)
 - Stability during one betatron damping time
 - Dynamic aperture is reduced due to nonlinear field of sextupoles and wigglers.

Tune Survey of ILC Damping Ring

• TESLA Dogbone (17 km)

Smallest dynamic aperture with $|\delta| < 0.5$ % for each tune

Lighter color indicates larger dynamic aperture.

Tune Survey of ILC Damping Ring

• OCS (6.5 km)

g=ListContourPlot[score, PlotRange->{0.0,0.4}, MeshRange->{{Nux1-Dnux/2,Nux2+Dnux/2},{Nuy1-Dnuy/2,Nuy2+Dnuy/2}}, FrameLabel->{"`fn`n`dx`n","`fn`n`dy`n"}, ContourColorFunction->colfx,Contours->100,DisplayFunction->Identity];

Summary

- Dynamic aperture survey
 - DynamicApertureSurvey[];
- Wiggler fringe field
 - F1
- Multipole errors
 - MULT
- Tune survey