WELCOME TO SAD2006 WHY SAD?

SEPT. 6, 2006 K. OIDE (KEK) @ SAD2006

PROS...

THERE ARE TENS OF COMPUTER CODES FOR ACCELERATOR DESIGN AND BEAM DYNAMICS, BUT SAD STILL MAY HAVE MERITS WHICH ARE NOT OVERTAKEN BY OTHERS YET.

Quick and versatile optics matching	 Any function, any variable: orbit, Twiss, coupling, geometry, emittance, etc., and their functions. Any interrelation between variables. More practical, less academic: off-momentum matching, finite-amplitude matching. Fast and fuzzy:
Unique physics	 Envelope method: radiation, intrabeam, space charge. Details matter: Fringe field and tiny nonlinearities. Special methods: Heaviside-Feynman, anomalous emittamce, etc.
Scriptable	 SADScript: <i>Mathematica</i>-like language +α. Class: Object-oriented programming. Callable from tracking, matching, etc.
Unification of accelerator model and machine control	 EPICS interface. TclTk GUI: Tkinter and KBFrame. Seamless and complete description of: design, simulation, control, measurement, and correction.

MATCHING

<pre>Get["/ldata/KEKB/KCG/SAD/ ler=LEROptics[]; Design orbit length = 30 ler@Choose["NormalCell"] Design orbit length = 76</pre>	<pre>%EKBOptics.n"]; 016.2426]; 5.1482258</pre>	
<pre>FitFunction:= Module[{e=Emittance[]}, {(Emittances/.e)[[1]]];</pre>	-12e-9,(MomentumCompaction/.e)-2e-4}*{1e9,1e4}	
free qf2p qd3p qeap go; 2 1 3.172 (N 3 1 1.7507E-02 (N 4 1 6.7987E-07 (N Matched. (6.8743E-16) DF OffMomentumWeight -	<pre>VEWTON) -0.1268 VEWTON) -5.5193E-03 VEWTON) -3.8835E-05 P = 0.02500 DP0 = 0.00000 ExponentOfResidual = 2.0</pre>	
\$\$\$ f AX ####### \$\$\$ f NX ########	# -1.33E-15 \$\$\$ f BX ####### # 4.160830 # 1.324966 \$\$\$ f AY ####### # 3.894E-14	
\$\$\$ f BY ######	# 22.410891 \$\$\$ f NY ####### # 1.360161	
\$\$\$ f LENG #######	# 76.148226 \$\$\$ f FUN1 0.0 1 2.5417E-8	
\$\$\$ f FUN2 0.0	1 -6.433E-9	
Match Emittance and Momentum Compaction, by FitFunction.		
8	······································	

emit

Closed orbit:
x px/p0 y py/p0 z dp/p0
Entrance : .000000 .000000 .000000 .000000 .000000
EXIT : 0.00E-18 1.20E-18 .0000000 .0000000 -1.1E-19 .000000
Extended Twiss Parameters:
AX: 6.30E-16 BX: 4.160830 ZX: 9.41E-20 EX: .002710
PSIX: 3.73E-17 ZPX: -5.5E-19 EPX: -1.9E-17
R1: .000000 R2: .000000 AY: -2.3E-15 BY: 22.41089 ZY: .000000 EY: .000000
R3: .000000 R4: .000000 PSIY: .000000 ZPY: .000000 EPY: .000000
AZ: -I.IE-35 BZ: 1.000000
Units: B(X,Y,7), E(X,Y), R2: m PST(X,Y,7): radian 7P(X,Y), R3: 1/m
Design momentum P0 = 3.5000000 GeV Revolution freq. f0 = 3936959.1 Hz
Energy loss per turn U0 = .0271244 MV Effective voltage Vc = .0000000 MV
Equilibrium position $dz = .000000 \text{ mm}$ Momentum compact. $alpla = 2.0000\text{E}-4$
Orbit dilation $dl = .0000000 \text{ mm}$ Effective harmonic # h = .0000000
Imag.tune: 0.0000000 0.0000000 0.0000000
Real tune: 0.3249656 0.3601606 0.0000000
Damping per one revolution:
X : -3.8/4/6/E-06 $Y : -3.8/4886E-06$ $Z : -7.749895E-06$
Dumpting time (sec): $X \cdot 6.555315E_02$ $X \cdot 6.555112E_02$ $7 \cdot 3.277505E_02$
Tune shift due to radiation:
X : 4.730529E-13 Y : -1.015566E-13 Z : 9.392409E-09
Damping partition number:
X : 1.0000 Y : 1.0000 Z : 2.000
Emittance X = $1.20000E_{-8}$ m Emittance X = 00000000 m
Emittance Z = $.0000000$ m Energy spread = $7.33235E-4$
Bunch Length = .00000000 mm Beam tilt = .00000000 rad
Beam size xi = .22345896 mm Beam size eta = .00000000 mm
Successfully matched
Duccessiuny matched.

MATCHING PROCEDURE

OFF-MOMENTUM MATCHING

Often more powerful than Taylor expansion!

SPACE CHARGE IN A RING

- Strong-weak model, Gaussian distribution
- Equilibrium envelope/emittance calculation with space charge, radiation, intrabeam scattering.

(ILC-DR)

RADIATION

• Field of a moving charge (Lienard-Wiechert potential): $A_{\mu} = \frac{e}{4\pi\varepsilon_0 c} \frac{u_{\mu}}{u_{\nu}R_{\nu}}$

• Electromagnetic field (Heaviside-Feynman):

Differentiate by the time at the observation point.

$$\begin{split} \mathbf{E}(t) &= -\nabla \varphi - \frac{\partial \mathbf{A}}{\partial t} = \frac{e}{4\pi\varepsilon_0} \left[\frac{\mathbf{n}}{R^2} + \frac{R}{c} \frac{\partial}{\partial t} \left(\frac{\mathbf{n}}{R^2} \right) + \frac{1}{c^2} \frac{\partial^2 \mathbf{n}}{\partial t^2} \right]_{t'=t-R/c} ,\\ \mathbf{B}(t) &= \nabla \times \mathbf{A} = \frac{1}{c} \left(\mathbf{n} \times \mathbf{E} \right)_{t'=t-R/c} \\ \frac{\partial t'}{\partial t} &= 1 - \frac{1}{c} \frac{\partial R}{\partial t}, \text{ etc.} \end{split}$$

RADIATION

- Determine trajectory by tracking with TrackParticles and RADLIGHT.
- Once the trajectory is determined, radiation field at any location is calculated by RadiationField.

(KEKB LER, 100 m downstream of a bend, 1 cm above the horizontal plane.)

SUPER STORAGE RING

• In general, by any transformation, the sum of emittances of two degrees of freedom is higher than the original emittances.

 $\varepsilon_X + \varepsilon_Y \ge \varepsilon_x + \varepsilon_y$

In a solenoid field, however, it is possible to make the sum of *physical* (not canonical) emittances, much smaller than the original:

$$\varepsilon_{xm}^2 + \varepsilon_{ym}^2 = 2\varepsilon_x\varepsilon_y$$

• The conditions are:

$$\beta_x = \beta_y = 2 \frac{B\rho}{B_z} \frac{\varepsilon_x - \varepsilon_y}{\varepsilon_x + \varepsilon_y},$$
$$r_2 = -\beta_x / \sqrt{2}, \ r_3 = 1 / \sqrt{2}\beta_x$$

Thanks to K. Harada.

CONS...

SAD HAS SO MANY PROBLEMS, AT LEAST:

Incapabilities	 •No 6D Twiss: inconvenient for bunch compressor, ERL, etc. •Special elements: curved multipoles, large aperture elements. •Not yet perfectly integrated or maintained: polarization(SODOM), Taylor map, etc. •Strong-strong space charge.
Difficulties	 Tracking, optics, envelope are coded independently. Very hard to check the consistency. Elements such as BEND or MULT contain so many internal branches depending on the input parameters.
Anti-computer science	 98% FORTRAN (started with HITAC M-series and NEWLIB). Many historical layers without consistent programming strategy. Limited 64-bit capability. No multi-thread. GUI is limited by TclTk.
User-unfriendly	 Manuals, users guides, programmer's references are very poor, if exist. Less support. Hard portability: Installation is not easy except for geeks.