WELCOME TO SAD2006 WHY SAD?

SEPT. 6, 2006
K. OIDE (KEK) @ SAD2006

PROS...

THERE ARE TENS OF COMPUTER CODES FOR ACCELERATOR DESIGN AND BEAM DYNAMICS, BUT SAD STILL MAY HAVE MERITS WHICH ARE NOT OVERTAKEN BY OTHERS YET.

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\bullet \text { Any function, any variable: orbit, Twiss, coupling, geometry, } \\ \text { emittance, etc., and their functions. } \\ \bullet \text { Quick and versatile } \\ \text { optics matching }\end{array} \\ \bullet \text { Any interrelation between variables. } \\ \text { ampractical, less academic: off-momentum matching, finite- } \\ \bullet \text {-Fast and fuzzy: }\end{array}\right]$

MATCHING

Match Emittance and Momentum Compaction, by FitFunction.

emit

	x	px/p0	y	py/p0	z	dp/p0
Entrance	. 000000	. 000000	. 000000	. 000000	. 000000	. 000000
Exit	$6.60 \mathrm{E}-18$	1.26E-18	. 000000	. 000000	-1.1E-19	. 000000

Extended Twiss Parameters:
$A X: 6.30 \mathrm{E}-16 \mathrm{BX}: 4.160830 \quad Z X: 9.41 \mathrm{E}-20$ EX: . 002710
PSIX: 3.73E-17 ZPX: $-5.5 \mathrm{E}-19 \mathrm{EPX}:-1.9 \mathrm{E}-17$ R1: . 000000 R2: . 000000 AY: $-2.3 \mathrm{E}-15 \mathrm{BY}: 22.41089 \mathrm{ZY}: .000000$ EY: . 000000 R3: . 000000 R4: . 000000 PSIY: . 000000 ZPY: . 000000 EPY: . 000000 AZ: -1.1E-35 BZ: 1.000000 PSIZ: 1.11E-35
Units: $B(X, Y, Z), E(X, Y), R 2: m$ I PSI(X,Y,Z): radian । ZP(X,Y), R3: 1/m
Design momentum $\quad \mathrm{P} 0=3.5000000 \mathrm{GeV}$ Revolution freq. $\quad \mathrm{f} 0=3936959.1 \mathrm{~Hz}$ Energy loss per turn U0 $=.0271244 \mathrm{MV}$ Effective voltage $\quad \mathrm{V}_{\mathrm{c}}=39390 \mathrm{MV}$ Equilibrium position $\mathrm{dz}=.0000000 \mathrm{~mm}$ Momentum compact. alpa = 2.0000E-4 Orbit dilation $d l=.0000000 \mathrm{~mm}$ Effective harmonic \# $h=2.000 \mathrm{E}$ Bucket height dV/P0 = . 0000000

Imag.tune: 0.0000000
Real tune: 0.3249656

> 0.0000000
> 0.3601606
0.0000000
0.0000000

Damping per one revolution:

$$
\mathrm{X}:-3.874767 \mathrm{E}-06 \quad \mathrm{Y}:-3.874886 \mathrm{E}-06 \quad \mathrm{Z}:-7.749895 \mathrm{E}-\emptyset
$$

Damping time (sec):
$X: 6.555315 E-02 \quad Y: 6.555112 E-02 \quad Z: 3.277505 \mathrm{E}$
Tune shift due to radiation:

$$
\begin{aligned}
& \text { shift due to radiation: } \\
& \text { X : 4.730529E-13 Y: -1.015566E-13 Z : } 9.392409 \mathrm{E}-09
\end{aligned}
$$

Damping partition number:
1.0000 \qquad
Emittance X
Emittance Z
Bunch Length
Beam size xi

$=.00000000 \mathrm{~m}$
$=7.33235 \mathrm{E}-4$
$=.00000000 \mathrm{rad}$
$=.00000000 \mathrm{~mm}$

MATCHING PROCEDURE

OFF－MOMENTUM MATCHING

	－	
$\square \Delta p / p$	． 02200	．02200
■ Δ p／p for $\xi^{-t r i m}$	． 01000	． 01000
－Monitor	\＄\＄\＄	駷串

$\left.X \mid X * \# * \operatorname{Exp}[-(\# / D P W))^{\wedge} / 2\right] \&$
－V_{v} Goal fun．XIY＊\＃＊Exp［－（\＃／DPW）＾2／Z］\＆

Match	Restrict SX Variable RangeUse Current $S \times$ Value	
	SF Variable Width	． 10000
	SD Variable Width	.10000
	SL Variable Width	． 10000

Control IP PMID

$\square \sqrt{-4.81333} \stackrel{+}{+} \quad \square \sqrt{-41.76581} \stackrel{+}{\downarrow}$
$\left(\partial \beta^{*}{ }_{\mathbf{x}} \partial \delta\right) / \beta^{*}{ }_{\mathbf{x}} \quad\left(\partial \beta^{*}{ }_{v} \partial \delta\right) / \beta^{*}{ }_{v}$

Save Optics $\mid>$ LER \vee HER $\quad\lrcorner$ BEAST $\quad \square$ Crab Optics $\quad \downarrow$ Couple RF \mid Base Lattice：\quad Default

SpAcE CHARGE IN A RING

- Strong-weak model, Gaussian distribution
- Equilibrium envelope/emittance calculation with space charge, radiation, intrabeam scattering.

Diffusion process

Horizontal Emittance

Horizontal Emittance (nm)

Vertical Emittance

RADIATION

- Field of a moving charge(Lienard-Wiechert potential): $A_{\mu}=\frac{e}{4 \pi \varepsilon_{0} c} \frac{u_{\mu}}{u_{\nu} R_{\nu}}$

$$
\varphi=\frac{e}{4 \pi \varepsilon_{0}}\left(\frac{1-\frac{1}{c} \frac{\partial R}{\partial t}}{R}\right)_{t^{\prime}=t-R / c}, \quad \mathbf{A}=-\frac{e}{4 \pi \varepsilon_{0} c^{2}}\left(\frac{1}{R} \frac{\partial \mathbf{n} R}{\partial t}\right)_{t^{\prime}=t-R / c}
$$

Differentiate by the time

- Electromagnetic field (Heaviside-Feynman): at the observation point.
$\mathbf{E}(t)=-\nabla \varphi-\frac{\partial \mathbf{A}}{\partial t}=\frac{e}{4 \pi \varepsilon_{0}}\left[\frac{\mathbf{n}}{R^{2}}+\frac{R}{c} \frac{\partial}{\partial t}\left(\frac{\mathbf{n}}{R^{2}}\right)+\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{n}}{\partial t^{2}}\right]_{t^{\prime}=t-R / c}$,
$\mathbf{B}(t)=\nabla \times \mathbf{A}=\frac{1}{c}(\mathbf{n} \times \mathbf{E})_{t^{\prime}=t-R / c}$

$$
\frac{\partial t^{\prime}}{\partial t}=1-\frac{1}{c} \frac{\partial R}{\partial t}, \text { etc. }
$$

RADIATION

- Determine trajectory by tracking with TrackParticles and RADLIGHT.
- Once the trajectory is determined, radiation field at any location is calculated by RadiationField.

(KEKB LER, 100 m downstream of a bend, 1 cm above the horizontal plane.)

SUPER STORAGE RING

- In general, by any transformation, the sum of emittances of two degrees of freedom is higher than the original emittances.

$$
\varepsilon_{X}+\varepsilon_{Y} \geq \varepsilon_{x}+\varepsilon_{y}
$$

- In a solenoid field, however, it is possible to make the sum of physical (not canonical) emittances, much smaller than the original:

$$
\varepsilon_{x m}^{2}+\varepsilon_{y m}^{2}=2 \varepsilon_{x} \varepsilon_{y}
$$

- The conditions are:

$$
\begin{aligned}
& \beta_{x}=\beta_{y}=2 \frac{B \rho}{B_{z}} \frac{\varepsilon_{x}-\varepsilon_{y}}{\varepsilon_{x}+\varepsilon_{y}}, \\
& r_{2}=-\beta_{x} / \sqrt{2}, r_{3}=1 / \sqrt{2} \beta_{x}
\end{aligned}
$$


```
KEKBOptics=Class[{},
    {IRLoad=True,
    SharedElementList$={}},
    {SharedM=OpenShared[128*200],
    Section="All",
        K2Step=1,
        ChromaGoalX:="XIX*#*Exp[-(#/DPW)^2/2]&",
        ChromaGoalY:="XIY*#*Exp[-(#/DPW)^2/2]&",
                            Instance variables
        InitialCond={"AX", "AY", "BX", "BY", "DX", "DPX", "DY", "DPY"}},
    SetupLattice[file$_]:=Module[{file,f,s1,s2,s3,s4},
        SetBeast[];
        $Line=0];
    SetupNormalCell[]:=If[NCLINE===Null,
        Module[{
            l=Take[ExtractBeamLine[],
                {LINE["POSITION",NormalCell[[1]]],
                    LINE["POSITION",NormalCell[[2]]]}]},
                NCLINE=BeamLine[PQD1C,l,-PQD1C]]];
-EROptics=Class[{KEKBOptics},
    {LatticeSetup=False},
    {RingName="ASC",
        BXIP=0.33,
        BYIP=0.008,
            \longleftrightarrow Instance functions
.......
```

Subclass

```
Instance creation
```

EROptics=Class[\{KEKBOptics\},
\{LatticeSetup=False\},
\{RingName="ASC", BXIP=0.33, BYIP=0.008,

Designed by N. Akasaka.

ler=LEROptics[];

ler@ReadOpticsFile[ler@DefaultOptics[]];

SAD HAS SO MANY PROBLEMS, AT LEAST:

Incapabilities	-No 6D Twiss: inconvenient for bunch compressor, ERL, etc. - Special elements: curved multipoles, large aperture elements. - Not yet perfectly integrated or maintained: polarization(SODOM), Taylor map, etc. - Strong-strong space charge.
Difficulties	-Tracking, optics, envelope are coded independently. Very hard to check the consistency. -Elements such as BEND or MULT contain so many internal branches depending on the input parameters.
Anti-computer science	-98\% FORTRAN (started with HITAC M-series and NEWLIB). - Many historical layers without consistent programming strategy. -Limited 64-bit capability. -No multi-thread. - GUI is limited by TclTk.
User-unfriendly	-Manuals, users guides, programmer's references are very poor, if exist. -Less support. -Hard portability: Installation is not easy except for geeks.

