
JCE

A Java-based Commissioning

Environment tool

Hiroyuki Sako, JAEA
(hiroyuki.sako@j-parc.jp)

Hiroshi Ikeda, Visible Information Center Inc.

SAD Workshop 06, 6 Sep 2006

• Motivation and background

• Status of development

• Summary

• Demo

Advantages of SAD as a beam

commissioning tool

– Seamless handlings of device control, data

monitoring, model calculations, in a unified

platform

– Flexible interpreter language SAD script

• Convenient as commissioning language since it

runs without compilation (quick developing a tool

and easy debugging). Successful in KEKB

In J-PARC we considered SAD as a

primary candidate of commissioning tool

To use SAD;

• It is necessary to maintain (and debug) the SAD

codes

• Addition of J-PARC own functionalities is

necessary
– Controls, modeling, data analysis

• For these, we needed to understand the details of the

codes and also make necessary modifications for

easy extension and maintenance scheme

Looking into SAD code

We struggled to read and understand the codes

for a few months.

 But, it is found to be very hard;
– Highly technical Fortran codes to analyze SAD script

syntax

– Use of common blocks and indexes to arrays

– Documents and comments are not enough

• Script analysis parts and core parts are interlaced

deeply and hard to separate

 A completely new tool easy to understand in a

modern OO technology is a solution

 (JAVA Commissioning Environment = JCE)

Java Commissioning Environment (JCE)

 Unified commissioning environment tool with Java
Primary Goals: To support users to write commissioning tools in SAD script

 with simple scheme to maintain codes

 with easy addition of commands/functionalities

 Inheriting SAD concepts and SAD script language
• Effective commissioning by seamless handlings of device control, data monitoring,

model calculations, GUI, and analysis tools

– New features and advantages of JCE
• Java Implementation

– Multi-platform

» LINUX, Windows,… wherever with JAVA

– Easy to install and run

» Just unzip and run

• We can maintain and develop codes by ourselves for J-PARC

• Manuals and documents of code explanations

• Utilization of Java libraries in the world

– Interface to RDB, and data query functions will be implemented
• Device parameter DB, data archiver DB, operation parameter DB (Save & Restore DB)

• Via JDBC (Java DB library)

– Inclusion of control tools being developed in control group

– Modeling (XAL, Trace3D, (SAD, MAD)
• Call of SAD and MAD as external simulator possible

SAD

script

SAD script analyzer
ACCELERATOR

Device

EPICS

Language JAVA

SAD

script

control

JAVA

class

modeling

XAL JAVA

class

optimization

(JAVA

class

ACCELERATOR
Device

EPICS
Virtual

ACCELERATOR

SAD

Analysis tools

By J-PARC

JAVA

Analysis tools

 by SNS

JAVA

GUI tool
GUI tool

SAD JCE

Developed by addition of commands

EPICS

XAL

Simulation

DB

Lattice info

EPICS info

Architecture Comparison

Lattice info

Script analyzer

Modeling

tools

language Fortran

Mixture between script analyzer

And modeling (core) part

modeling

Trace3D modeling

SAD

EPICS

archiver

DB

Status of JCE Development

• About 300 functions implemented so far

• Functions same as SAD
– Flow control

• If, For, Do, While,…

– List operations
• Table, Flatten, Thread,…

– File I/O
• Open, Read, Write

– GUI components, graph
• Frame, Window, Button, TextLabel,…

– EPICS I/O
• CaRead, CaWrite, CaMonitor

• Not supported
– Non-Mathematica syntax (SAD model core)

• New features (planned)
– RDB I/O

– plug-in of user defined Java classes

• Model calculations with Mathematica like functions
– XAL (directly) and Trace3D (via JNI (Java Native Interface))

– SAD and MAD as external commands

– Automatic generation of input files for these models from a common
Simulation DB is established.

XAL library in JCE
A high level application framework developed in

SNS

– Successful in SNS commissioning of LINAC and ring

– Java implementation in well organized structure

– Easy to include in JCE

– Commissioning, modeling, EPICS, RDB tools

– XAL Online Modeling

• Space-charge envelope simulation with ellipsoid

space-charge distribution

• Functions for J-PARC LINAC (features in Trace3D)

• Ring modeling functions are being developed for SNS

commissioning (envelope calculations, closed orbits,

single particle tracking)

JCE algorithm flow

1. Parser: creates a
syntax tree

By JavaCC (Java Compiler-
Compiler)

2. Builder: convert the
syntax tree to a
command tree

3. Evaluation engine:
execute the results
using command
implementation

JCE code organization

The JCE codes are organized in the following packages

Clear separation of interpreter analysis part (evaluator) and
command implementation (command.*) achieved!

• vendor External Java libraries

• utils General utilities

• math Mathematic utilities

• evaluator Evaluation engine (script analysis part)

• command.* Implementation of each command class
different packages for each category

• frontend UI for execution of application

• application Construction of application

JCE development

• Use of

eclipse for

IDE

• Code version

management

with SVN

(sub version)

JCE Wiki Page

(under development)

• Manuals

• How-to

• Tutorials

• Development

logs

Summary and perspectives

• JCE has been developed in Java for

simple maintenance scheme and

extensibility but keeping the concepts of

SAD as a powerful commissioning

platform

• We start developing tools for LINAC

commissioning in Dec

Demo script of a simple orbit

correction in LINAC-MEBT1

• MEBT1: a beam transport line with 10

steering dipole magnets, 8 quadrupoles and 8

BPM’s

• Initial beam position has offset

– Orbit has deviations

• Calculate optimum steering magnet settings

to correct orbit deviations

– With Simplex minimization algorithm

• Set the obtained magnet parameters to a

virtual accelerator via EPICS and monitor the

BPM position data

