# Design of 200MeV KEK-ERL Test facility by using SAD

Miho SHIMADA,

Accelerator Laboratory, KEK

(Present affiliation, UVSOR, IMS)

#### **Energy Recovery Linac (ERL)**

- Beam energy were recovered and putted into the following bunch
  - High coherency, low emittance and short bunch beam



#### Plan of 200MeV KEK-ERL Test Facility (~2005 year)



# **Merging optics**

#### • The merging optics comprise

- **4 quadrupoles** for matching the injector lattice functions into the linac
- 4 dipoles chicane for merging the injector to main linac.



#### **Optics up to the insertion devices**



### Lattice of 200MeV KEK-ERL Test Facility



# **Parameters of ERL Test Facility**

| Max. beam energy :             | <b>205 MeV</b>                           |
|--------------------------------|------------------------------------------|
| • Max. average beam current :  | 100 mA                                   |
| • Max. bunch charge :          | 77 pC                                    |
| • Operating frequency :        | <b>1.3 GHz</b>                           |
| Normalized transverse          |                                          |
| emittance (x/y) :              | 100 nm rad                               |
| • Rms bunch length :           | $1 \text{ ps} \rightarrow 0.1 \text{ps}$ |
| • Rms energy spread :          | 5 ×10 <sup>-5</sup>                      |
| • RF cavity gradient :         | 20 MV /m                                 |
| • Injection beam energy :      | 5 MeV                                    |
| • R <sub>56</sub> in one TBA : | $-0.7\sim0.0$                            |
|                                |                                          |

# **Required beam quality**

- Small normalized emittance
- Short bunch
- High current
- High efficiency energy recovery

 $e_{pnx} < 100$ nm rad  $s_z \sim 0.1$  psec  $\sim 100$ mA

etc

#### Simulation

- 1. Emittance growth due to Coherent Synchrotron Radiation (CSR) at the chicane with low energy (Kim *et al*)
- 2. Emittance growth due to HOMs in multi-bunch (Kim *et al*)
- 3. Emittance growth in the arc section for bunh compression
- 4. Efficiency of beam energy recover after bunch compression

# **Emittance growth due to CSR wake**



• Emittance growth caused by the aberration from the nominal orbit by the energy change due to coherent synchrotron radiation (CSR).

#### 1. Optimization of the optics of the merger (Kim *et al*)

Bending angle in merging dipoles should be as small as possible to minimize the influence of CSR on the beam emittance.



#### **Optimization of the merger section for minimization of the emittance growth due to CSR**



• Optimization of the length of the drifts and  $b_x$ ,  $b_y$  at the injection

•  $q = 37 \text{ pC}, s_z = 1 \text{ psec}, e_{nx} = 100 \text{ nm} \cdot \text{rad}$ 

### 2. Emittance growth due to HOM in Multi-bunch (Kim *et al*)

#### A resonator wake by RF HOM

•  $R/Q = 23.8 \times 10^4 [Ohm/m^2]$ : Tesla type



#### **Emittance in Single bunch tracking**



Beam Emittance

# Emittance by continuous 1000 bunches passage



### Multi-bunch instability due to RF HOMs and CSR effect

320 bunches, q = 37 pC,  $s_z = 1 \text{ psec}$ ,  $e_{nx} = 100 \text{ mm} \text{-mrad}$ 



- R/Q= 23.8D4, fh=2.5752D9, Q=5D4
- R/Q=8.69D4, fh=1.8722D9, Q=7D4
- R/Q=6.54D4, fh=1.8642D9, Q=5D4

 1
 233

 30
 262

 59
 291

 88
 320

 117
 320

 146
 175

If  $s_z = 1$  psec, the emittance growth is caused by HOM rather than CSR.

# **Bunch compression and emittance growth due to CSR**



• Bunch compression is performed at the arc section

#### **Bunch compression at the arc**



*How to optimize the bunch compression?* 

- 1.  $R_{56}$  of ARC section was varied from 0 to -0.7 m.
- 2. RF phase shift,  $f_{RF}$ , was controlled.
- 3. Broaden the energy spread,  $s_E$ .

#### Additional two quadrupole magnets



# Matching $q_{CSR}$ and $q_{Phase}$ at the end of the fourth bending magnet



When the direction of the transverse phase space,  $q_{\text{Phase}}$ , is parallel to the direction of the CSR kick,  $q_{\text{CSR}}$ , the emittance growth can be minimized.

**Emittance growth is large** Minimized emittance growth

 $\tan 2\theta_{Phase} = \alpha / (\gamma - \beta) \qquad a, b, g: \text{Twiss parameter}$  $\theta_{CSR} = \sin \phi / \rho (1 - \cos \phi) \qquad f, r: \text{Bending angle and radius}$ 

$$q_{\rm Phase}$$
 vs.  $R_{56}$ 



- $q_{\text{Phase}}$  was controlled by changing twiss parameter *a* at the end of the fourth bending magnet
- Controllable range in  $q_{\text{Phase}}$  is depend on  $R_{56}$
- According to the left graph,  $q_{CSR}$  agree well with  $q_{Phase}$  at  $R_{56} = -0.5$  m. The emittance growth can be minimized around it.

### Longitudinal Phase space



Sharp peak  $\rightarrow$  Large CSR

Smooth shape → Small CSR

#### **Transverse Phase Space**



#### 4. Energy recovery after bunching



The optics of ARC 1 and ARC 2 are not symmetry because the longitudianal phase space is not accurately upright at the insertion device.
 *R*<sub>56</sub> of ARC 2 was controlled under the condition that *R*<sub>56</sub> of ARC 1 is -0.4, *q* is 19.4 C, in which *e<sub>x</sub>*~200nm rad at the insertion devices.

## Relationship $s_z$ beginning of the cavity for energy recovery and $R_{56}$ of ARC 2



- In no CSR case, the optimum optics to recover the bunch length, 1 psec, is  $R_{56} = -0.5$  m.
- In CSR case, small  $R_{56}$  is enough to recover the bunch length, which is extended by CSR.

# Residual energy after the energy recovery and $R_{56}$ of ARC section for return



- The figure shows the change in the energy before and after the <u>cavity for energy recovery</u>.
- Efficiency of energy recovery is high for a short bunch.

#### **Energy distribution after the cavity for energy recovery** (energy recovery+energy loss due to CSR)



### Summary

- In the case of 1 psec electron bunch, HOM is more critical issue for the emittance growth than CSR.
- By optimization of arc section, 30mA is achieved with keeping the condition that  $e_{pnx}$ >200nm rad and  $s_z$ < 0.1psec (30*m*m) at the insertion device.
- For high efficiency energy recovery, the bunch length should not be recovered but remain to be short.
- In some simulation, we employed ERL Track developed by K. Yokoya, which is similar to SAD and work on Windows platform.