J-PARC Accelerator and Beam Simulations

Sep. 7th, SAD2006

Masahito Tomizawa

J-PARC Main Ring G., KEK

- Outline of J-PARC Accelerator
- Characteristics of High Intensity Proton Machines
- Beam Codes and Examples

Summary

J-PARC Facility

• MR 50GeV, 750kW

Linac structures and parameters

•Ion Source: • RFQ: • DTL: •Separated DTL(SDTL):	Volume Production Type Stabilized Loop Electro-Quad in DT, 3 tanks no quad in DT, short tank(5cells), 32tanks
• Annular Coupled Structure (ACS)): axial symmetric
•Suber Conductina Linac (SCL):	wide aperture. high acceleration aradient
•particles:	н-
• Energy:	181 MeV (RCS injection)
	400 MeV (RCS injection)
	600 MeV (to ADS)
• Peak current:	30 mA @181MeV
	50 mA @400 MeV
 Repetition: 	25 Hz (RCS Injection)
•	50 Hz(RCS Injection + ADS application)

3GeV Synchrotron (RCS)

- •Rapid Cycle (25Hz)
- High Output Beam Power 1MW
- •H⁻ Injection by long lived carbon foil
- Horizontal/Vertical and Longitudinal Painting Injection
- High Efficiency Transverse and Longitudinal Collimation

•Circumference	348.3m
 Repetition 	25Hz(40ms)
•Injection Energy	180/400 MeV
•Output Energy	3GeV
•Beam Power	0.6/1MW
•Harmonic	2
•Bunch Number	2
•Nominal Tune	(6.72, 6.35)
•Transition γ _t	9.14
•S.C. Tune Shift	-0.2

50GeV Synchrotron (Main Ring)

- ·Imaginary Transition γ lattice
- High Efficiency Slow Extraction
- Both Sides Fast Extraction for Neutrino and Abort line

·High Efficiency Transverse Collimation in Transfer Line and Ring

Beam Commissioning Schedule

• Linac	2006 D	ec.~
·RCS	2007 Se	ep.~
• MR	2008 M	ay~
slow	extractior	2008 Dec.~
fast	extractior	n 2009 May~

Linac

RFQ PARMTEQ-M: PIC, electrode image effect is included

- DTL,SDTL,ACS, matching sections,L3BT
 - Trace-3D: linear optics with space charge force
 - PARMILA: PIC, 2D, 3D
 - IMPACT: PIC, 3D, foil scattering

(LINSAC: particle-particle code by T. Kato)

Characteristics of High Intensity Proton Ring

•High Energy Proton Beam loss

radiation

soil activation --> ground water

sky-shine

cooling water activation

air in the tunnel activation

instruments activation -- serious maintenance

 \propto beam intensity x energy (W)

Loss Minimization

Loss Localization (local shielding and special maintenance) Hallo Collimators (finite loss limit)

Permitted Beam Loss of J-PARC Rings

• RCS (400MeV injection, 1MW output) injection area 1kW (0.75%) extraction area 1kW (0.1%) collimator 4kW (3%) other area 1W/m (0.3%) --> total 4% •RCS to MR transfer line (3GeV,45kW) collimator 0.45kW (1%) [1.3kW is possible from shielding] other area 1W/m (0.5%) --> total 1.5% •MR (0.75MW output, fast extraction operation)

injection area 0.135kW (0.3%) fast extraction area 1.1kW (0.15%) collimator 0.45kW (1%)

Space Charge and Halo

nonlinear space charge force

•tune spread->ring/space charge resonance

•environment dependence: mirror charge/current

0.2

- orbit design: SAD
- •foil scattering: GEANT+SAD
- coupling between shift bumps quad:

3D OPERA data+tracking code (M. Shirakata) ,SAD

painting process: Simpsons, ORBIT

RCS, MR Fast Extraction and MR Injection

(one turn)

M. Tomizawa

Beam Collimations

• STRUCT

interaction/scattering with material and tracking

Longitudinal Motion

200

Tracking Simulation

multipole, fringe field, (deviations, interference, alignment error)

· SAD

MADX-PTC (3D field map), COSY

RCS dynamic aperture by SAD (H. Hochi)

Space Charge Tracking Simulations

*PIC codes

space charge, self-consistent

- (ACCIM, PATRASH)
- Simpsons
- · ORBIT/MPI

parallel

foil scattering, painting, time varying field, impedance

--> Installation in KEK and JAEA

super computer has been completed

Space Charge Tracking Simulations (cont.)

Long Term Space Charge Simulation (MR)

Impedance and Instability

Longitudinal and Transverse Impedance

- Analytical approach
- Wake implementation in Simpsons (Y.Shobuda)
- · ORBIT

E-P instability

Simulation code by K. Ohmi

Radiation

• MARS Interaction with material beam tracking in the given field Radiation Dose Activation

3-50BT collimator (by T. Suzuki)

Radiation Distribution: 3GeV P hits No 1 Ta Scraper

Neutral Fluence Distribution

Charged Fluence Distribution

Summary

- Various beam simulation codes are utilized for intensive studies of J-PARC accelerators
- Goal of ring beam simulation (my personal view)
 present space charge PIC codes (realistic, reliable)
 *fringe,multipole,interference, deviations, alignment error,
 scattering, collimators, environments (mirror,impedance,,,)
 *full acceleration process
 - *through RCS to MR
 - --> Optimizations to minimize beam loss of both RCS/MR operating tunes, painting, longitudinal not impossible!!

Thanks for their cooperation

F. Noda, H. Hochi, A. Molodozhentsev, M. Ikegami, A. Ueno