An Introductory Plasma simulation by

Particle－in－cell（PIC）code プラズマシミュレーション事始め
Пर－$\sigma \mu \alpha, \alpha \tau 0-$ ，（（ Groek：$=$
－From Debye shelter to Laser Wakefield Acceleration－

1．Simulation gets more easy for science and technology
2．Algorithms for PIC codes
3．Finite difference method for Poisson equation
4．Results of 1D \＆2D PIC simulations
5．Towards a simulation for Laser Wakefield Acceleration

Nanotechnology center，ISIR，Osaka University Yoshida Akira 吉田亮

6 September， 2006 Workshop SAD2006 at KEK

Personal schedule：スケジュール

1．Make a 1 D Electro－static Particle－in－cell ：

～April，2006．
2． 2 D Electro－static Particle－in－cell：
～August，2006．．．
3．Interaction between floating electromagnetic field and
charged particles：Complete electromagnetic
field
4．Towards a simulation for Laser Wakefield Acceleration
5．Mathematical analysis for unstable phenomena by discretized solutions used in Finite difference

T We want to simulate Plasma Physics by P C to understand Electromagnetism with 3D charts or movies.
$\because \quad$ Note PC with 2GHz clock \& 2GB memory (\backslash a quarter of a million) is far superior to twenty-years-old super computer (\backslash three billion)
$\because \quad$ Note PC with 2 GHz clock \& 2GB memory (\backslash a quarter of a million) is far superior to twenty-years-old super computer with 70 MHz clock \& 256MB memory (\backslash three billion) by 1~2 figures ! Cost/performance $\sim 10^{5}$ or 10^{6}

1980's Pipelined Super computer VP series (VP100/200/400) consists of a Scalar processor (Main frame : M380) and a Vector processor (vector registers and pipelined arithmetic unit) :


```
67MHz
```

Clock of pipelined arithmetic unit was 7.5 ns (2 floating operations/15ns)
Two pipelined arithmetic unit calculate simultaneously : 268 MFLOPS (VP200 : Add.+Mult. 134 MFLOPS x2 ; Winter, 1983) (Mega Floating Operations Per Second)
©Pentium4 (2GHz) : if one floating operation/clock : ~ 2GFLOPS ? If two floating operation/clock : 2GFLOPS $\times 2=\sim 4$ GFLOPS ? (Giga Floating Operations Per Second)

Xenon dual core processor (2.7GHz) : Linpac record : 1.93 GFLOPS (May2006)

Algorithm for Particle－in－cell code ：calculate movement of charged particles in

 a electromagnetic fields（Shigeo kawata川田重夫 Simulation Physics 1，1990） $E p=\left(S 1 E_{i+1 / 2}+S 2 E_{i+3 / 2}\right)(1)$

Algorithms for Kawata＇s Particle－in－cell code

荷電粒子の配置に基ずきメッシュごとに電荷密度を計算する ポアソン方程式を中心差分法で解きメッシュ毎の静電ポテンシャルを求める
メッシュ毎の電場を計算する

荷電粒子の運動を計算し新しい位置を求める

メッシュ毎の電荷密度，静電ポテンシャル，電場，全粒子の位置と速度 の出力
$t=t+\Delta t$

$$
\text { \{時間の終了条件まで回る\} }
$$

Fundamentals of the particle-in-cell plasma simulation method

J. P. Verboncoeur, UCB-NE

This seminar is the first in a series on the fundamentals of the particle-in-cell (PIC) technique of plasma simulation [1-3]. In the PIC method, point particles with continuum phase variables are tracked within a discrete spatial mesh on which electromagnetic fields are defined. We will cover the essence of the PIC method as outlined in Figure 1, including the integration of the equations of motion, fundamental particle boundary conditions, the interpolation of charge and current source terms, ρ and J, to the field mesh, and the interpolation of the fields E and B from the mesh to the continuum particle locations.

Figure 1 PIC simulation flowchart.
${ }^{[1]} \overline{\mathrm{C}} \overline{\mathrm{K}} \overline{\mathrm{K}} . \overline{\mathrm{Bir}} \overline{\mathrm{r} s \text { salr }}$ and A. B. Langdon, Plasma Physics via Computer Simulation, IOP Rublishing Ltd. (2005) (1991)
[2] R. W. Hockney and J. W, Eastwood, Computer Simulation Using Particles, IOP Publishing Ltd. (1988).
[3] J. P. Verboncoeur, "Particle simulation of plasmas: review and advances", Plasma Phys. Control. Fusion 47 (2005) A231-A260.

Formerly KEK, Honorary professor Ogata said

"The P I C simulation is Birdsall's !" at spring 2006, but
It's FORTRAN77 and a little older...? \rightarrow C++ is cool.

C.K.Birdsall, "1D Electro Static code : ES1. Algorithm"

C.K.Birdsall and A.B.Langdon, "Plasma Physics via Computer Simulation", 1991

* These are more precise than Kawata's algoritms?

Approximation by finite difference method for Poisson equation

A. 3 dimension Poisson equation :

$$
\nabla^{2} \phi=-\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}\right)=-\frac{\rho}{\varepsilon} \ldots(1)
$$

where, ϕ is static potential, ρ is charge density, ε is dielectric constant
B. 1dimension finite element method: FDM

$$
\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{\rho}{\varepsilon} \ldots\left(1^{\prime}\right)
$$

$$
\frac{\phi_{i+1}+\phi_{i-1}-2 \phi_{i}}{\Delta x^{2}}=-\frac{\rho_{i}}{\varepsilon} \cdots(2): \phi_{i+1} \text { can be calculated with } \phi_{i-1} \text { and }
$$

we solve n (number of mesh) simultaneous linear equations with two boundary conditior

$$
\begin{aligned}
& \phi_{1}=o \\
& \phi_{1}+\phi_{3}-2 \phi_{2}=\frac{\rho_{2}}{\varepsilon} \Delta x^{2} \\
& \phi_{2}+\phi_{4}-2 \phi_{3}=\frac{\rho_{3}}{\varepsilon} \Delta x^{2} \\
& \cdots \\
& \phi_{n}+\phi_{n+2}-2 \phi_{n+1}=\frac{\rho_{n+1}}{\varepsilon} \Delta x^{2} \\
& \phi_{n}=V
\end{aligned}
$$

boundary condition 1: $\boldsymbol{\phi}_{\mathrm{i}=1}=0$
boundary condition 2: $\boldsymbol{\phi}_{\mathrm{i}=\mathrm{n}}=\mathrm{V}$

We solve (3) by Gaussian elimination. (3) can be converted into a triple diagonal matrix, and n lines and 4 lows array is used to solve it to save memory of computer if it's a large simultaneous linear equations.
C. 2 dimension finite difference method (FDM)

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=\frac{P}{\varepsilon} \ldots\left(1^{\prime}\right)
$$

Central finite difference Method of 2D Poisson equation:

$$
\frac{\phi_{i+1, j}+\phi_{i, j+1}+\phi_{i-1, j}+\phi_{i, j-1}-4 \phi_{i, j}}{\Delta x^{2}}=-\frac{\rho_{i}}{\varepsilon} \ldots\left(2^{\prime}\right)
$$

(2') is same as Laplace equation, and it is also solved by Gaussian elimination. Here we use quintuple diagonal matrix and solve n lines and 6 lows array to solve it.

1Dimension（eq．2）

2Dimension（eq．2’）

Block triple diagonal matrix ブロック 3 重対角行列の例
4．－（Only 3 lines upper \＆lower of the diagonal element have nonzero elements ）
n－lines，4－colums array is stored

$$
\Delta x^{2} \rho_{2} / \varepsilon
$$

 to save memory

```
    C++ code for computation of electric field for 2D Poisson equation with Central finite
    difference method(ポアソン方程式の中心差分による電場の計算部分
    // calculate electric field : 2D poisson equation for electrostatic field
void electric_field()
    // f(x,y)=1/(h*h)* *(Ui+1,j)+(Ui,j+1)+(Ui-1,j)+(Ui,j,-1)-4Uij]
{
    for (int i=1; i<=( lattice_number_x * lattice_number_y -1 ); i++) {
        static_electric_field[i] =
            ( static_electric_potential[ i + 1] +
                        static_electric_potential[i-1 ] +
                        static_electric_potential[ i + lattice_number_in_field ] +
                    static_electric_potential[ i - lattice_number_in_field ] -
                        4* static_electric_potential[ i] ) /
                        (mesh_width*mesh_width*mesh_width); *
                        }
    static_electric_field[ lattice_number_x * lattice_number_y ]= 0.0;
}
*static_electric_potential[ i] is an 1D array arranged from original 2D mesh array:
static_electric_potential[i+1]+static_electric_potential[ i-1 ]+static_electric_potential[ i+lattice_number]+
static_electric_potential[ i-lattice_number]- 4static_electric_potential[ i]
```


Fig.1: A simulation of (maybe) Debye shelter by 1D Electro-static particle-in-cell code :
Particles around the position 0~140 uniformly at time $=0$ move to the position $0 \sim 20$ at time $=10 \sim 110$, and the velocity about 0 at time $=0$ spread abruptly to $-35 \sim 0$ during time $=10 \sim 110$ in this simulation.

Fig.1': A simulation of (maybe) Debye shelter by 1D Electro-static particle-in-cell code :
Particles are circling and accelerated against the charge (the initial boundary condition) due to the generated magnetic field by the movement of the charged particles.

Fig. 2 : A simulation of 1D Electro-static particle-in-cell code (it=101) : ? Particles at the position $0 \sim 16$ with particle velocity ~ 0 uniformly at time $=0$ change to particle velocity $+2.0 \sim-1.5$. It's irregular wavy shape, and gradually raising the velocity difference as time goes by from 0 to 101.

Fig.2' : A simulation of 1D Electro-static particle-in-cell code (it=1001) : Particles at the position $0 \sim 16$ with particle velocity ~ 0 uniformly at time $=0$ change to particle velocity $+2 . \sim-1$ periodically, gradually raising the difference as time goes by $0 \sim 1001$.

view: 60.0000, 30.0000 scale: $1.00000,1.00000$

Fig. 3 : A simulation of 2D Electro-static particle-in-cell code (it=101) : Particles on the diagonal line with particle velocity ~ 0 uniformly at time $=0$ change to particle velocity $\sim+1.6$ drawing spirals as time goes by from 0 to 101 .
particle velocity

view: 60.0000, 30.0000 scale: $1.00000,1.00000$
Fig.3' : A simulation of 2D Electro-static particle-in-cell code (it=1001) : Particles on the diagonal line with particle velocity ~ 0 uniformly at time $=0$ change to particle velocity $\sim+1.6$ drawing spirals as time goes by from 0 to 101 .

view: $60.0000,30.0000$ scale: $1.00000,1.00000$
Fig. 4 : A simulation of 2D Electro-static particle-in-cell code (it=101) : Particles on the $x-y$ plane with velocity ~ 0 uniformly at time $=0$ change to particle velocity $\sim+2.5$ drawing spirals as time goes by from 0 to 101 .

view: 90.0000, 93.0000 scale: 1.00000, 1.00000

Fig.4' : Side view from the X-axis of Fig. 4 (it=101) :
Particles on the $x-y$ plane with particle velocity ~ 0 uniformly at time $=0$ change to particle velocity $\sim+2.5$ on both sides as time goes by from 0 to 101 .

Precision of finite difference method: Analysis of Numerical methods

1. An initial value problem of ordinary differential equation:

$$
\frac{d y}{d t}=\alpha y, y(0)=y_{0} \ldots .(1)
$$

Usual way to use finite difference method for (1) is :

$$
y_{n+1}-y_{n}=\alpha \Delta t y_{n}, y_{0}=\beta \ldots . \text { (2) }
$$

Truncated error of (2) is the order more than $\Delta \mathrm{t}$ (order 1) if Y^{\prime} is replaced with $\left(\left(Y_{n+1}-Y_{n}\right) / \Delta t\right)$ and it can be Taylor expanded at $Y n$:

$$
y^{\prime}-\left(\left(y_{n+1}-y_{n}\right) / \Delta t\right)+O(\Delta t) \ldots \ldots(3)
$$

If Y^{\prime} is replaced by $\left(\left(\mathrm{Y}_{\mathrm{n}+1}-\mathrm{Y}_{\mathrm{n}-1}\right) / 2 \Delta \mathrm{t}\right)$ and it is Taylor expanded at Yn , the truncated error is:

```
(\mp@subsup{y}{n+1}{}-\mp@subsup{y}{n-1}{})/2\Deltat-\mp@subsup{y}{}{\prime}+O((\Deltat\mp@subsup{)}{}{2})\ldots...(4)
```

This shows central difference method has higher precision (order 2). But, central difference method needs to have a value of $\mathrm{y}_{1}: \mathrm{y}_{1}=\mathrm{y}_{0}+\Delta \mathrm{t} \alpha \mathrm{y}_{0}$ (Euler's method). //

Chaos generated by Discretization for a differential equation

1. Logistic equation : Linear differential equation representing increase of an organism

$$
\begin{equation*}
\frac{d u}{d t}=\varepsilon u \ldots \ldots \tag{1}
\end{equation*}
$$

u means the number of organisms, ε is a positive constant. A solution of (1) is:

$$
u(t)=u_{0} e^{\varepsilon t} \ldots \ldots(2)
$$

U_{0} is the initial value at $\mathrm{t}=0$, and it is suitable for describing the increase of, for example, a bacterium. But a little bigger life, for ex., a drosophilia's increase is said to decrease as the function of the population u, and become saturated.

$$
\frac{d u}{d t}=(\varepsilon-h u) u \ldots \ldots \text { (3) }
$$

(3) Is called Logistic equation, ε and h are positive constants, and it is made by modifying (1). The solution for of (3) is:
$u(t)=\frac{\varepsilon C e^{\varepsilon t}}{1+h C e^{\varepsilon t}}, C=\frac{u_{0}}{\varepsilon-h u_{0}} \ldots .$. (4),
Fig. a shows (4) : It monotonously increasing as t, pass a inflection point, and asymptotically gets closer to the saturation point ε / h.

Fia. a

2. Discretization of Logistic equation

We have many methods to make a difference equation by discretyzing (3).
The best known is Euler's finite difference method $\left[u(n \Delta t)=u_{n}\right]$:

$$
\begin{equation*}
\frac{u_{n+1}-u_{n}}{\Delta t}=\left(\varepsilon-h u_{n}\right) u_{n} . \tag{5}
\end{equation*}
$$

The others are :

$$
\begin{align*}
& \frac{u_{n+1}-u_{n}}{\Delta t}=\left(\varepsilon-h u_{n+1}\right) u_{n} \ldots \ldots . . \tag{6}\\
& \frac{\varepsilon\left(u_{n+1}-u_{n}\right)}{e^{E \Delta t}-1}=\left(\varepsilon-h u_{n+1}\right) u_{n} \ldots . \tag{7}
\end{align*}
$$

3. Robert May's study :

Mathematics proved that "a solution of (5) approximates the solution of (3) by making Δt small enough in a finite time $0<t<T$ ". But the infinite case ($n \Delta t \rightarrow+\infty$) of the solution for (5) have remains unknown.
To rewrite (5) with $\mathrm{a}=1+\varepsilon \Delta \mathrm{t},\left(\mathrm{h} \Delta \mathrm{t} \mathrm{u}_{\mathrm{n}}\right) /(1+\varepsilon \Delta \mathrm{t})=\mathrm{X}_{\mathrm{n}}$, make a finite difference equation with X_{n} :

$$
\begin{equation*}
x_{n+1}=a x_{n}\left(1-x_{n}\right) . \tag{8}
\end{equation*}
$$

(8) is a quadratic function and has max value a/4 at $x_{n}=1 / 2$. Then, if $0<a<4 \& 0<x_{n}<1$, it follows $0<x_{n+1}<1$. So we think only $0<a<4 \& 0<=x_{0}<=1$
[Extracted from Sugaku seminar "Nonlinear phenomena \& analysis",1981]

To change a means to change ε or $\Delta \mathrm{t} . \quad x_{n+1}=a x_{n}\left(1-x_{n}\right)$
The behavior of the solutions of (8) depend on the value of a.

1. $0<=a<1: X_{n}$ shows monotone decreasing and $x_{n} \rightarrow 0$. (fig. b)
2. $1<=a<=2: X_{n}$ shows monotone and $X_{n} \rightarrow 1-(1 / a)$. (fig. c)
3. $2<a<=3$: X_{n} shows not monotone, but attenuated vibration and $x_{n} \rightarrow 1-(1 / a)$. (fig. d)
4. $3<a<=1+\sqrt{6}=3.449 \ldots \quad: X_{n}$ shows period two vibration. (fig. e)
5. $\mathrm{x}_{0} \underbrace{1+\sqrt{6} 6=3.449 \ldots<\mathrm{a}: \text { we can }}_{\mathrm{n}} 0<=\mathrm{a}<1$
(fig. b)

(fig. c)

(fig. d)

(fig. e)

Extracted from "Chaos and Fractals, Peitgen,Jurgens,Saup" ; p. 589
lonized Plasma consists of ions and electrons. Plasma wave is a compression wave of plasma electrons, and it is called Electrostatic wave, or Langmuir wave.

LWFA Linear model says
 fwhm bunch length < plasma wavelength/ $\% 8$

Plasma Vibration

（Simple harmonic Os c i l I

ation)

Angular frequency：$\omega=(k / m)^{1 / 2}$ ；constant：k ，mass：m ， $F=k L$ ；force proportional to distance：F ，distance：L（単振動）
Coulomb force ：$F=e^{2} / 4 \pi \varepsilon_{0} r^{2}$
$L \sim r$ ；the distance between electrons

$$
\begin{aligned}
& k=e^{2} / 4 \pi \varepsilon_{0} r^{3}=e^{2} n / 4 \pi \varepsilon_{0} \leftarrow \quad n=1 / V=1 / r^{3}: \text { Electron density } \\
& \omega=(k / m)^{1 / 2} \sim\left(e^{2} n / 4 m \pi \varepsilon_{0}\right)^{1 / 2}
\end{aligned}
$$

Plasma wave is excited in both longitudinal \&transverse directions

in longitudinal direction
we have acceleration and deceleration phases alternatively.
in transverse direction we have focusing and defocusing phases

Plasma Wakefield Acceleration (P W F A or LWFA) an old idea

another old idea: beam loading

Heavy beam loading cleans up the wake created by a laser.

Resultant wake
A.J.W.Reiysma et al., PRL94(2005)085004

New idea ：Create just a single pulse from the very beginning

Two counter－injected laser pulses with equal frequencies produces stationary wave，in which electrons gets energy large enough to be trapped in a wake produced by the pump．
対向する2個のfsレーザビー 4：
レーザ継続中だけ定在波ができ，
レーザ領域に高温プラズマが生成され，
高温のプラズマ電子は航踓場に補足される

 $u_{2}=10$ and $a_{1}=1$ ．Elvons beyod the trped obit se ipated int the makind

©Towards Laser Plasma Accelerator (~ 100 as?)

- Plasma density \propto Short wave length \propto Big accelerating gradient \propto Short bunch length (\propto proportional to)
- Tera watt Laser appears and makes Laser plasma accelerator a reality (~ 2010)

Summary

1. Made a 1 D Electro-static Particle-in-cell :
2. Making 2 D Electro-static Particle-in-cell:
3. Starting Mathematical analysis for unstable phenomena by discretized solutions used in Finite difference method (2D Chaos)

Next step

4. Complete electromagneticfield: Interaction between floating electromagnetic field and charged particles
5. Realize a simulation for Laser Wakefield Acceleration
