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Personal schedule:

Make a D Electro-static Particle-in-cell

April,2006.

D Electro-static Particle-in-cell:

~August,2006…

Interaction between floating electromagnetic field

and 

charged particles : Complete electromagnetic

field 

Towards a simulation for Laser Wakefield

Acceleration

Mathematical analysis for unstable phenomena by

discretized solutions used in Finite difference



We want to simulate Plasma Physics by 

 to understand Electromagnetism with 3D

charts or movies.

Note PC with 2GHz clock & 2GB memory (\

a quarter of a million) is far superior to twenty-

years-old super computer (\ three billion)



Note PC with 2GHz clock & 2GB memory (\ a quarter of a million) is far

superior to twenty-years-old super computer with 70MHz clock & 256MB

memory (\ three billion) by 1~2 figures   Cost/performance ~105 or 106

1980’s Pipelined Super computer VP series (VP100/200/400) consists of

a Scalar processor Main frame M380)  and a Vector processor (vector

registers and pipelined arithmetic unit )

Clock : 15ns = 1.5 10-8sec ;  Hz : /clock = 1/1.5 10-8 = 0.67 108  =

67MHz

Clock of pipelined arithmetic unit was 7.5ns  ( 2 floating operations/15ns )

Two pipelined arithmetic unit calculate simultaneously 268 MFLOPS

(VP200 Add.+Mult. 134 MFLOPS x2 ; Winter,1983)    (Mega Floating

Operations Per Second)

Pentium4 (2GHz) : if one floating operation/clock ~ 2GFLOPS  If

two floating operation/clock  2GFLOPS 2= ~4GFLOPS ?  Giga

Floating Operations Per Second)

Xenon dual core processor (2.7GHz) : Linpac record : 1.93GFLOPS

(May2006)



Algorithm for Particle-in-cell code : calculate movement of charged particles in

a electromagnetic fields  (Shigeo kawata Simulation Physics 1, 1990)

Initial conditions setting

Place charged particles in a mesh

Solve Poisson eq. =
2 to calculate potential & electric field

Calculate the electric field at each particle and calculate the movement for a particle

Output resultsEp=(S1Ei+1/2 + S2Ei+3/2)/( S1 + S2);      S1 : the distance between particle and

(i+3/2),

                S2 : the distance between

(i+1/2) and particle.

                  S2 ---- S1 ---               @:the position of a particle

|------ - - - ----|------------|------@----|-----------|----------------------- - - - -----------------|
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Algorithms for Kawata’s Particle-in-cell code

etc

t = t + t



(1991)

Formerly KEK, Honorary professor Ogata said

“The  simulation is Birdsall’s ” at spring 2006, but

It’s FORTRAN77 and a little older…?   C++ is cool.



C.K.Birdsall, ”1D Electro Static code : ES1. Algorithm” 

Integration of

equations of motion

Fi  V i Xi

Particle loss/gain at the

boundaries (emission,

absorption, etc.)

Monte Carlo collisions

of motion

 V’i Vi

Interpolation of particle

sources to grid

(Xi,Vi) ( j,Jj)

Integration of field

equations on grid

( j,Jj)  Ej,Bj

Integration of fields

to particles

(Ej,Bj) Fi

+ 

C.K.Birdsall and A.B.Langdon, “Plasma Physics via Computer Simulation”, 1991

These are more precise than Kawata’s algoritms?



Approximation by finite difference method for Poisson equation

A 3 dimension Poisson equation
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     where is static potential is charge density is dielectric

constant

B 1dimension finite element method: FDM
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: i+1can be calculated with i-1 and

i

we solve n number of mesh simultaneous linear equations with two boundary condition

boundary condition 1: i=1 =0

boundary condition 2: i= =V

)2...(
2

2

11 iiii

x
=

+
+

…(3)

)'1...(
2

2

=
x



We solve (3) by Gaussian elimination. (3) can be converted into a triple diagonal

matrix, and n lines and 4 lows array is used to solve it to save memory of

computer if  it’s a large simultaneous linear equations.

C 2 dimension finite difference method (FDM)

)''1...(
2

2

2

2

=+
yx

)'2...(
4

2

,1,,11,,1 ijijijijiji

x
=

+++
++

Central finite difference Method of 2D Poisson equation:

(2 ) is same as Laplace equation, and it is also solved by Gaussian

elimination. Here we use quintuple diagonal matrix and solve n lines and 6

lows array to solve it.



i

i-1 i+1

1Dimension (eq.2)

i+1,j

i,j+1

i,j-1

i-1,j

2Dimension (eq.2 )

static_electric_potential[i-1]

static_electric_potential[i+1]

static_electric_potential[ i +

 lattice_number_in_field ]

static_electric_potential[ i -

 lattice_number_in_field ] i,j static_electric_potential[ i ]

A11
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A44
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An-1n-1
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A21 A23

A32 A34

A43

Block triple diagonal matrix

3

Only 3 lines upper & lower 

of the diagonal element

have nonzero elements 

A45……
0

0

n-lines,4-colums array is stored

to save memory
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 // calculate electric field :  2D poisson equation for electrostatic field

void electric_field()          // f(x,y)=1/(h*h) * [(Ui+1,j)+(Ui,j+1)+(Ui-1,j)+(Ui,j-1)-4Uij]

                                        //    6                        1          2           3           4          5

{                              // finite difference method

    for (int i=1; i<=( lattice_number_x * lattice_number_y -1 ); i++)  {

        static_electric_field[ i ] =

( static_electric_potential[ i + 1 ]    +

static_electric_potential[ i - 1 ]    +

   static_electric_potential[ i + lattice_number_in_field ]   +

static_electric_potential[ i - lattice_number_in_field ]   -

  4 * static_electric_potential[ i ]  )     /

 (mesh_width*mesh_width*mesh_width);  *
}

        static_electric_field[ lattice_number_x * lattice_number_y ]= 0.0;

}

C++ code for computation of electric field for 2D Poisson equation with Central finite

difference method (

*static_electric_potential[ i ] is an 1D array arranged from original 2D mesh array:

static_electric_potential[ i +1]+static_electric_potential[ i-1 ]+static_electric_potential[ i+lattice_number]+

static_electric_potential[ i-lattice_number]- 4static_electric_potential[ i]



Fig.1: A simulation of (maybe) Debye shelter by 1D Electro-static particle-

in-cell code :

Particles around the position 0~140 uniformly at time=0 move to the

position 0~20 at time=10~110, and the velocity about 0 at time=0 spread

abruptly to -35~0 during time=10~110 in this simulation.
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Fig.1’: A simulation of (maybe) Debye shelter by 1D Electro-static

particle-in-cell code :

Particles are circling and accelerated  against the charge (the initial

boundary condition) due to the generated magnetic field by the

movement of the charged particles.
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Fig.2 : A simulation of 1D Electro-static particle-in-cell code (it=101) :  ?

Particles at the position 0~16 with particle velocity~0 uniformly at time=0 change to

particle velocity +2.0~ -1.5. It’s irregular wavy shape, and gradually raising the velocity

difference as  time goes by from 0 to 101.
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Fig.2’ : A simulation of 1D Electro-static particle-in-cell code (it=1001) :

Particles at the position 0~16 with particle velocity~0 uniformly at time=0

change to particle velocity +2.~ -1 periodically, gradually raising the

difference as  time goes by 0~1001.



Fig.3 : A simulation of 2D Electro-static particle-in-cell code (it=101) :

Particles on the diagonal line with particle velocity~0 uniformly at time=0 change to

particle velocity ~+1.6 drawing spirals as  time goes by from 0 to 101.

At time=0 particles lines

on the diagonal



Fig.3  : A simulation of 2D Electro-static particle-in-cell code (it=1001) :

Particles on the diagonal line with particle velocity~0 uniformly at time=0

change to particle velocity ~+1.6 drawing spirals as  time goes by from 0

to 101.



Fig.4 : A simulation of 2D Electro-static particle-in-cell code (it=101) :

Particles on the x-y plane with velocity~0 uniformly at time=0 change to

particle velocity ~+2.5 drawing spirals as  time goes by from 0 to 101.

Fig.4



Fig.4’ : Side view from the X-axis of Fig.4 (it=101) :

Particles on the x-y plane with particle velocity~0 uniformly at time=0 change

to particle velocity ~+2.5 on both sides as  time goes by from 0 to 101.

Particles on the x-y plane with particle velocity~0 uniformly at time=0



Precision of finite difference method: Analysis of Numerical methods

1. An initial value problem of ordinary differential equation:

)1.....()0(, 0yyy
dt

dy
==

Usual way to use finite difference method for (1) is :

)2.....(, 01 ==+ ytyyy
nnn

Truncated error of (2) is the order more than t (order 1) if Y is replaced with

((Yn+1-Yn)/ t) and it can be Taylor expanded at Yn :

)3)......(()/)((~' 1 tOtyyy nn ++

If Y’ is replaced by ((Yn+1-Yn-1)/2 t) and it is Taylor expanded at Yn, the truncated

error is:

)4).....()(('~2/)( 2
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This shows central difference method has higher precision (order 2). But, central

difference method needs to have a value of y1 : y1=y0+ t y0  (Euler’s method).   //



Chaos generated by Discretization for a differential equation

1 Logistic equation : Linear differential equation representing increase of an organism

u means the number of organisms, is a positive constant. A solution of (1) is:

),2.......()( 0

t
eutu =

U0 is  the initial value at t=0, and it is suitable for describing the increase of, for

example, a bacterium. But a little bigger life, for ex., a drosophilia’s increase is

said to decrease as the function of the population u, and become saturated.
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dt
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=
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(3) Is called Logistic equation, and h are positive constants, and it is made by

modifying (1). The solution for of (3) is:
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Fig. a shows (4) : It monotonously

increasing as t, pass a inflection

point, and asymptotically gets

closer to the saturation point /h.

If U gets close to the singular

point a strange vibration starts



2. Discretization of Logistic equation

[ Extracted from Sugaku seminar “Nonlinear phenomena & analysis”,1981]

We have many methods to make a difference equation by discretyzing (3).

The best known is Euler’s finite difference method [u(n t) un]:
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3. Robert May’s study :

Mathematics proved that ”a solution of (5) approximates the solution of (3) by

making t small enough in a finite time 0<t<T”. But the infinite case (n t )

of the solution for (5) have remains unknown.

To rewrite (5) with a=1+ t, (h tun)/(1+ t)=Xn ,make a finite difference

equation with Xn :

)8)........(1(1 nnn
xaxx =+

(8) is a quadratic function and has max value a/4 at xn=1/2. Then, if 0<a<4 & 0<xn<1,

it follows 0<xn+1<1. So we think only 0<a<4 & 0<=x0<=1



To change a means to change or t.

The behavior of the solutions of (8) depend on the value of a.

1. 0<=a<1 : Xn shows monotone decreasing and xn 0. (fig. b )

2. 1<=a<=2 : Xn shows monotone and xn 1-(1/a). (fig. c )

3. 2<a<=3 : Xn shows not monotone, but attenuated vibration and xn 1-(1/a). (fig. d

)

4. 3<a<=1+ 6=3.449… Xn shows period two vibration. (fig. e)

5. 1+ 6=3.449…<a : we can see period four, eight, … period 2n         (fig. f)

x0

(fig. b )

1-1/a

n
(fig. c ) (fig. d )

1-1/a

x0 x0

(fig. e)

0<=a<1
1<=a<=2 2<a<=3
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Extracted from “Chaos and Fractals, Peitgen,Jurgens,Saup” p.589

Self-Similarity in the Feigenbaum Diagram

period 2n : fig. f



Ionized Plasma consists of ions and electrons. Plasma wave

is a compression wave of plasma electrons, and it is called

Electrostatic wave, or Langmuir wave.

Thin and dense areas

appear = wake.
Wake behaves as an

electrostatic wave = plasma wave.

Electric field

accelerates

electron beam.

 Laser pulse push surrounding

electrons ( ponderomotive

force).  Thin electron density

area appears.

B. Surrounding electrons

rush into the thin density

area.





Plasma Vibration

Simple harmonic 

Angular frequency : =(k/m)1/2   constant: k, mass: m

F=kL ; force proportional to distance: F, distance: L

Coulomb force : F=e2/4 0r2

L~r ; the distance between electrons 

k= e2/4 0r3= e2n/4 0 n=1/V=1/r3:Electron density

= (k/m)1/2~ (e2n/4m 0)1/2



Plasma wave is excited in both

 

in longitudinal direction
we have acceleration and deceleration phases 

alternatively.

in transverse direction
we have focusing and defocusing phases

alternatively.



Wake

Laser

Plasma Wakefield Acceleration  or LWFA



Electron

bunch



New idea : Create just a single pulse from the very

beginning

2



Electric energyElectric energy

Laser

Plasma wave

Driven  beam

Plasma

creation

Optical channel

formation

diffraction

Pump

depletion

Self

modulation

dephasing

Beam

loading

Wave decay

Laser wakefield accelerator;

electric energy changes into

laser (light), and plasma

wave.

RF linear accelerator

Flow of energy [ A.Ogata, Nucl. Instr.Meth.410(1998) ]

klystron

RF wave

Driven beam

HOM loss

Wave decay

Beam

loading

Inside of the

accelerator



Towards Laser Plasma Accelerator

            as ?

Plasma density Short wave length

Big accelerating  gradient

   Short bunch length  (  :proportional to)

Tera watt Laser appears and makes Laser

  plasma accelerator a reality (~2010)



                          Summary

1. Made a D Electro-static Particle-in-cell

2 Making D Electro-static Particle-in-cell:

3. Starting Mathematical analysis for unstable

    phenomena by discretized solutions used in Finite

    difference method (2D Chaos)

                                Next  step

4 Complete electromagneticfield : Interaction between

floating electromagnetic field and charged particles 

5 Realize a simulation for Laser Wakefield Acceleration


